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Numerical oscillations on nonuniform grids

PAULA DE OLIVEIRA and FERNANDA PATRICIO
Department of Mathematics, University of Coimbra, Coimbra, Portugal

Received 18 November 1994; accepted in revised form 10 April 1996

Key words: Boundary-value problems, Finite differences, nonuniform grids, numerical oscillations.

Abstract. In this paper we study a class of numerical methods used to solve two-point boundary-value problems
on nonuniform grids. Particular attention is devoted to numerica oscillations which are quantified for different
methods. Numerical experiments are also included.

1. Introduction

The purpose of this paper is to study numerical oscillations for a class of numerical methods
used to solve two-point boundary-val ue problems on nonuniform grids. Our contribution gives
atheoretical foundation to numerical results obtained earlier by Veldman and Rinzema[1].

Recently, several adaptive methods have been developed to solve Partial Differential
Equations whose solution presents sharp spatia transitions. When standard centered finite-
difference formulas are generalized to nonuniform grids, the order of the truncation error is,
generally, lower than on uniform grids. However, the use of some of these formulas provide
very accurate results. This apparently surprising fact suggests that the global-error should
have an order of convergence greater than that of the truncation error. Such a phenomenon,
which has been called supraconvergence, has received the attention of many authors. As to
supraconvergence of numerical methods for boundary-value problems we can mention for
example Manteuffel and White in [2]. With the study of supraconvergence it becomes clear
that the truncation error does not provide uswith agood indicator of the method’saccuracy. In
the above-mentioned paper, Veldman and Rinzema study two finite-difference discretizations
for atwo-point boundary-value problem and conclude that, even if both are supraconvergent,
—with the same global-error order — they produce very different numerical simulations. More
precisely, the formula which has afirst-order truncation error gives more accurate numerical
results.

These remarks lead us to the conclusion that the truncation and global-error orders do not
give enough information on “the quality” of the numerical simulation. If two formulas have
the same global-error order, it seems clear that an indicator to distinguish them could be the
size of the error constant. The boundedness properties of this constant are related to stability,
but a more detailed analysis of its behaviour can give important information on the expected
accuracy.

In the present paper, and following this last idea, we study the numerical oscillations of a
class of methods, which includesthe methodsin [1] and [2], for solving atwo-point boundary-
value problem on nonuniform grids. Our approach furnishes a prediction of the magnitude of
the non-physical oscillations, and also a study of the sensitivity of the method to the index of
the node where a step change occurs.
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The paper is organized as follows. In Section 2 we construct a general class of methods
for solving atwo-point boundary-value problem on a nonuniform grid. In Section 3 we study
the numerical (non-physical) oscillations of different methods of the class. In Section 4 its
asymptotic behaviour (relatively to the second-derivative coefficient) is studied. A certain
number of numerical examples which illustrate the accuracy of our predictions are also
exhibited. Finally in Section 5 some remarks are presented.

2. A classof methodsfor solving boundary-value problems

We consider the numerical solution of two-point boundary-value problems of type

——+ k- = 1 k
dx+ 02 0, O0<z<1, >0, 2.1)

T(0)=0, T(1)=1,

through three-point difference schemes defined on a nonuniform mesh {z;} ¥, with

O=zo<z1<22...<2ZN_1<2N =1 (2.2)
Let

hj+1:$j+1—$j, j:O,...,N—l, (23)

h = j:Or,r.]..?(V—lhj+l. (24)

To discretize the first derivative in (2.1) we use afirst-order three-point formula defined by

d
ap L @) = ¢Tj-1+ ¢;Tj +Tj1 + O(h) (25)

forj =1,...,N — 1, where T; standsfor an approximation of 7'(z;) and

{ 1 thj+l _ 1 thj (2.6)

gj:_hj+hj+1_hj+hj+1’ Cj:hj+hj+l_hj+hj+l )

In what follows formula (2.5) will be represented by [c;, c;, ¢;]. From (2.6) we can give
(2.5) theform

d T —Tja hiTya + hjaTyoa — (hy + hyjya)T;
—T(zj) = —— : — ¢ : :
d$ hj + I’LJ+1 hj + h3+1

+ O(h), (2.7

which means that a first-order three-point formula can be viewed as a centered difference
formula with a certain amount of numerical viscosity. In fact, the second term on the right-
hand side of (2.7) is a discretization of — %cjhjhjﬂ dd—;zT, on the nonuniform grid (2.2). For
certain choices of the parameter c; we find discretization formulas already referred to in the
literature. In Table 1 we have listed some of these. For a positive c;, where ¢; = 1/h;, we
obtain an upwind difference formulaU; if ¢; = O acentered difference formulaA is obtained.
Whenc¢; = (hjy1— hj)/(thj+1h;), we obtain method B, for ¢ = 1, and method C, for ¢ = 2;
both methods are mentioned in [1] and [2].
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Table 1. First-order discretization formulas

Formula cj Formula Maintermin
designation truncation error
1 1 .
U 1/h; 5 F’O] $hi 5T (x;)
L J J
[ 1 1 1 &
A 0 Thr ks O hj+1} 2(his1 = hy) 52T ()
hivi—h; | hit1 hit1— h; h; 3
B J J _ J , i J Lhiiih )T (s
hji1h; | hi(h +hjsa)’ hihjya 7 hjga(hypa+ hy) o (hi41hi) T (25)
higi—h; [ 1 hjpa—h; 1 2
C Dot 7 By = Y J Lhor — b)) T (s
2h;11h; i Zhj’ 2h,hj 1 2hj+1:| 4( Jj+1 J)m ()

We shall discretize the second-order derivative in (2.1) using the first-order formula

d—zT($ ) = th'jJrl — (hJ + h3+1)T'J + hj+1fl}'71
df J h]h]+1h]+l/2
1 o (2.8)
—§(hj+1 - hj)@T(xj) + O(h?),

whereh;,1/> = (hj +hji1)/2. From (2.7) and (2.8) we obtain aclass of methodsfor solving
(2.2) of type

LT Siph. hiTiv1—(hj+hjt)Tj+hjpaTj1 . B
hj+h;i1 + (?hyhﬁl + k) hihjiahi 112 =0, j5=1...,N—1,
To =0, (2.9)

Ty =1

If we represent % by DT} y1,forj =1,..., N — 1, then (2.9) takes the form

To =0, (2.10)

{ [hjt1— (2k + cjhjhjy1)]DTj41 + [hj + (2k + ¢jhjh;y1)]DT; =0, j=1,...,N -1,
Ty =1

From (2.10) we can study the oscillatory behaviour of the class of methods. In fact we
have

hj + (2k + cjhjhji1)
hj_|_1 — (Zk + thjhj+l)

provided that hj+1 — (2k + thjhj+1) #0,7j=21...,.N—-1Let

DT 1 = — DT;, j=1,...,N—1, (2.12)

ajt1=hjt1— (2k + thjhj+l)7 bj =h; + (2k + thjhj+l)7 (2.12)
forj =1,...,N — 1. Inorder to avoid spurious oscillations at = = z;, the condition

bi/aj41<0, j=1,...,N—1, (2.13)
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Table 2. Necessary and sufficient conditions to avoid oscillation at = = x;

Method aj41 b; Condition (2.13)
Designation
U —2k hj +hjy1+ 2k aways satisfied
A hjy1—2k hj + 2k hjt1<2k,j=1,...,N -1
B hj — 2k hjt1+ 2k hj <2k,j=1,...,N—-1
c hi +hiva =4k B+ hiea+ 4k hj+hj1<4kj=1,...,N—1

2 2

must be verified. For methods listed in Table 1, the particular form of condition (2.13) is
indicated in Table 2. We observe that if 4 ; is constant, methods A, B and C reduce to the
standard centered di scretization method, and condition (2.13) inthis casetakesthewell-known
form h < 2k. Moreover, method U is the upwind method which clearly is devoid of spurious
oscillations. Since (2.10) is afirst-order difference equation, with variable coefficients, it can
easily be solved giving

T;=Q;/Qn, j=1...,N -1, (2.14)
with
by ho  bibp h3 qbibo-- b 1 b
= (1= == ... S AV it e b e N I 21
@ ( az hy + azaz hy +oet (D) axaz---a; hy (2.15)

3. Study of numerical oscillations

In this Section we will be concerned with the comparative study of numerical oscillations of
methods A, B and C. Methods A and C have afirst-order truncation error, but it was proved
in [2] that the associated global errors are of second order. Method B has a second-order
truncation error and it can easily be established that it has a second-order global-error. If we
compare numerical results produced by methods A, B and C, we conclude that, for certain
nonuniform grids, method A produces very accurate solutions with practically no spurious
oscillations. Methods B and C are less accurate and these lead to significant non-physical
oscillations. Consequently, the global error and the truncation-error orders do not give enough
information as to the “quality” of the simulation, namely the numerical oscillations. In [1]
the authors studied methods A and B following an agebraic approach, but their aim was
not to quantify the magnitude of numerical oscillations. Here we follow a different approach
which furnishesa priori estimations of the magnitude of the oscillations produced by thethree
methods.

RESTRICTIONS ON THE STEPSIZES

Problem (2.1) has aboundary layer near x = 1. This fact suggests that we should use a mesh
of decreasing stepsize, that is

hjsa<hj, j=1,...,N—1
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Table 4. Numerical viscosity coefficient
Table 3. Signs of coefficients a; y

. - i Method Viscosity coefficient
Method Restrictionson  Sign of a; according to (2.15)
handh U ,H%
A h<2k a;j >0, j=1,...,1
’ v hi —h;j +1
a; <0, j=I+1,...,.N—-1 A k+%
B h<2k a; >0, j=1,....]+1
a; <0, j=I+2.. N—1 B k
C h<2k a; >0, j=1,....]+1 hi— s
h+h>4k a;<0 j=I+2.. N—-1 C k+(%)

To simplify the presentation and following [1] wewill consider adomain [0,1] decomposedin
two subdomains [0, z] and [z, 1], each one of these being discretized with a uniform mesh
of stepsize h and h, respectively. According to Table 2 we will impose

T < 2k, (2.16)

which is a condition that guarantees that no numerical oscillation will appear in [z, 1] for
method A and in [z71, 1] for method B. If we assume that . + A > 4 k, method C will
present no oscillation in [z7.1, 1]. With this restriction on & we can easily analyse (Table 3)
the signs of coefficients a; (coefficients b; are always positive). These signs will be used in
the comparative study of numerical oscillations.

Remark — Following the Modified Equation Approach we know that method (2.9), solves
exactly the ordinary differential equation, with an infinite number of terms,

dr ¢ d?T
T [’f + S hihiia - 3(hjt1 — hj)] s
. 3 .+ K3 BT
1 Cj 1541 j
k4 Zhjhjy1) (hjp1—hi) — ..=0
+ 3< + > ]+1>( j+1 J) 6hj+l‘|‘hj a3 + 0

In this sense this Equivalent Modified Equation has a viscosity coefficient given in Table 4
for the methods under consideration.

Method U hasthelargest numerical viscosity. Infact, itiswell known that upwind solutions
contain a large amount of dissipation and no numerical oscillations. Methods A and C are
also dissipative, even if they present a smaller amount of numerical viscosity than method U.
Method B is not dissipative. If auniform meshis used, methods A, and C are not dissipative.

COMPARATIVE STUDY OF NUMERICAL OSCILLATIONS

We recall that we represented by z; the common “changing node” of the two subdomainsin
which we decomposed [0,1], that is the node where a stepchange occurs. Let d represent an
odd number, with d < I and » an even number with v < I. Using the fact that the coefficients
b; are positive for the three methods and the information in Table 3, we easily conclude that

Qi >0 (3.1
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Table 5. Behaviour of the numerical solution of (2.10)

Method Behaviour in Behaviour in
[07 1'1] [1'17 1]
I odd I even I odd T even
A oscillating oscillating monotone  monotone
increasing  increasing
B oscillating  oscillating monotone  monotone
C oscillating  oscillating monotone  monotone
and
Q. <0. (3.2)
In fact
b1 b1b o bbby 1 b1bo .. by
Qq=1+ [—— + ] + {(—1)”1 2472 dm2 | (qy 22 Tdmll o (3g)
a>  a2a3 a203...a04-1 a2a3...a4

where each one of the terms in bracketsis positive.
On the other hand, (), can be written as

b1 bibo ... by_2

P PR\ P
a 203 .. .0y_1

_ [blbz...bvl
a2G3. .. Gy

(3.4)

and each one of the terms in brackets is negative. From (3.3) and (3.4) we conclude that for
4 < Ithenumerical solutionisalternately positive and negative and, consequently, oscillatory
for the three methods.

Let us now examinethe signsof Q; for j > 1. We have

bibo...br h

)y e
(=1) a2a3...67+1 h

Qj = Qr+

— _ (3.5
+(_1 I+1 ble-..bI+1 é bt (_1 j—1 blbz---bj—l é .
a263...6742 h azaz...a; h

Let usassume that I isodd. We have from (3.1), ; > 0. From Table 3 we conclude that
in (3.5) the sum in brackets is positive for method A. As for this method we have Q@ > O,
we conclude from (2.14) that the numerical solution isincreasing in [z, 1], asis the exact
solution of (2.1).

If Iiseven, we have Qn < Ofor method A and @; < 0, 7 > I. The numerical solution
produced by A isalsoincreasing in this case. Concerning methods B and C we concludefrom
(3.3), (3.4), (3.5), and Table 3 that the solution is monotonic in [z, 1]. We remark, however,
that the sign of @ x being unknown — for methods B and C — we do not know a priori if the
solutionisincreasing or decreasing in [z, 1]. We summarize these observationsin Table 5.

We recall that the uniform stepsize in [z, 1], h, is such that A < 2k. If the uniform
stepsizein [0, z7], h, satisfies h < 2k, we will have no numerical oscillations. Let us assume
that 4 > 2k, which means numerical oscillations will appear in [0, z;]. Let us consider the
oscillation w; of the numerical solutionin z;, for j < I, defined by

wj = |Tj — Tj—1 (3.6)
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thatis

_ 1 blbz e bj,]_
Qx| lazllaa] .- - Jaj|
Let us suppose that we have established, using (2.13), that the numerical solution is

oscillatory in z ;. From (3.6) we can then quantify the oscillation. We observethat w; < wji1q
for j < T — 1, where I representsthe index of the node where the stepchange occurs.

wj

(3.7

Remark — The existence of oscillations is detected by (2.13), that is by the sign of
DT} .1/DTj}. From (2.11) we have
DTj41 _  hj+ (2k +cihjhyjid) (39)
DT; hjv1— (2k + cjhjhji1)
Other definitions of numerical oscillations could be proposed. If we had defined the
oscillation by this last quotient, we would have had for j < I'(h; = h)

DI h+2k
DI; ~ h—2k

This expression tells us that DT}.1/DT} is constant for a certain & and a certain stepsize
h. Aswe observe numerically that oscillationsincrease with j, such a definition would not be
an interesting one. Asin (3.7) we have j < I, where I represents the index of the changing
node, the term b1b,...b;_1/]az||az| ... |a;| is the same for the three methods. To compare
the numerical oscillations w; it is then sufficient to quantify the different values of Q) for
methods A, B and C. In (3.5) let ; = N. We obtain

biby...bi_1h [ b b b
Qn = Qp + (—1)f 2ab2eecbrma i br o br (_ I+1)+
azaz...ay h lar1  arp1 \ apgo

b b b b b by_
() () () (). ()]
ary1 ar42 ar43 ar41 ar42 an
Since we assumed that h; = h,j = 1,...,I,andh; = hforj =T +1,..., N, wecan
simplify (3.10), obtaining

-1 7 |N-I-1
QN=Q1+(—1)I((ZSﬁ-%[ > br (—b”1>]. (3.11)

j=0 ar41 ar42

j<I. (3.9)

(3.10)

The sum in brackets — which we will represent by R(c;) in what follows — is different
for the three methods, because it depends on the coefficient ¢; (see Table 1). Thissumisa
geometric sumwith N — I terms. Wenotethat —b; /a1 isconstantfor j = I+1,..., N —1.
For methods A, B and C the first term of the sum, b7 /a1, and its ratio —b;1/ar,2 are
listed in Table 6. We note that the ratio, —b;;1/ar42, IS positive and the same for the three
methods. The first term, b7 /az1 IS negative for method A and positive for methods B and
C. Oscillations produced by methods A and B can now be very easily compared. We recall
that for A we have ¢; = O and for B, ¢; = (& — h)/(hh). Let us assumethat 12 + i° > 8k2.
Under this condition on 4 and h we have

_h+2 >E+2k
h—2k  h—2k

(3.12)
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Table 6. First term and ratio of the geometric sum

R(C[).
Method First term 22— _br4s
ar+1 ar42
A h+ 2k _h+2k
h— 2k h— 2k
B h+ 2k _h+2k
h —2k B — 2k
c h+h+4k _h+2k
h+h— 4k h— 2k

Observing now that @Q; > Ofor I odd and QQ; < O for I even, we may conclude

Iblbz...b[,]_ E
azaz...a; h

Qr+ (-1) RI(O)‘ > ‘Q[ + (—1)IM ﬁRI (h _h> ‘ (3.13)

azaz...ar h hh

The inequality (3.13) means that the modulus of ) 7, associated with method A, is larger
than the modulus of @) associated with method B and, consequently, that the oscillations of

method A are smaller than the oscillations of method B, once h2 + > > 8k2 is satisfied. In
Figure 1 we present the numerical solution of (2.1) as computed with Method A and Method
Bfor k = 102,h = 1.9 x 1071 and » = 102. Proceeding as before, we can compare
oscillations of methods B and C. We observe that

h+ 2k _h+ h + 4k

h—2k ~ h+h— 4k’

and, consequently,

biby...br_1h h—nh rbibo.. b1 h h—h
QI+( ) a2a3...ajJ hRI< ) _QI+( ) aza3...ag hRI 2hh

(3.14)

We remark that the left-hand side of (3.14) represents the quantity @ for method B (for
method B we have c; = h — h/hh) and the right-hand side is the quantity Qx for method
C (for method C, we have c; = h — h/2hh). In order to compare the relative sizes of the
oscillations, defined by (3.7), we must know the signs of both membersin (3.14). For example,
if they are both positive we conclude that B produces smaller oscillations than C (see Figure
2, which correspondsto N = 10,7 =5,k = 1073, h = 1.99 x 10~ h = 1073).

When the two parts of (3.14) are both negative, the oscillations produced by B are larger
than those produced by C. (see Figure 3, which correspondsto N = 10,7 = 5,k = 1072, h =
1.96 x 1071, = 1072).

4. Asymptotic behaviour of numerical oscillations

Aswe areinterested in the coefficient &, with £ < 1, we study, in this section, the asymptotic
behaviour of the oscillation when k& — 0. We note that we must have k # 0.
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Method A
0.4 0.6 0.8 1
F /\ Method B
Figure 1. Numerical solution of (2.1) computed with A and B for k = 1072,
Method B
.2 0.4 0.6 O‘.'B 1
Method C
! y
0.4 0.6 0.8 1

Figure 2. Numerical solutions of (2.1) computed with B and C for k = 10" 3.
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We already assumed that 7 < 2k. Let us supposethat i = k. For j < I, where z; isthe
common node of the two subdomains [0, z;], [z, 1], we have

(4.1)
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Method B

Method C

Figure 3. Numerical solutions of (2.1) computed with B and C, for k = 1072,

Method A
From (3.10), Table 3 and Table 6 we have

Qv = Qr+ (=1’ (h Zk h\Th—2k

42\
Th— 2k
with

o (- (75) ) G0

Replacing (4.3) in (4.2) and considering i = k, we obtain

h-|-2k - 1@ h + 2k
h — 2k
I—

+h+2k
h— 2k

h-|-2k< E+2k>

QN=[1—<—

Taking limitsin (4.1), when & — 0, we easily establish that

h — 2k 2 h h —2k

2
——~——, [Iodd
143NV ’
limw; =
k—0 2
I even.

—1+43NV-17

h+2k)I] <1 k> (-1 <h+2k)fl h+2k 131

h
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Table 7. Numerical solution of (2.1) with method A for & = 1073, and k = 10~5, respectively.

T Solution with & = 1073 x; Solution with k = 107°
0.199 7.491x1073 0.19999 8.189x 1073
0.398 —1.521x10~* 0.39998 —1.638x107°
0.597 7.646x10°3 0.59997 8.191x103
0.796 —3.104x10~* 0.79996 —3.277x10°°®
0.995 7.808x1073 0.99995 8.193x1073
0.996 1.601x 1072 0.99996 1.639x 1072
0.997 4.061x1072 0.99997 4.098x 1072
0.998 1.144x10° 1 0.99998 1.148x 1071
0.999 3.358x10°! 0.99999 3.362x10°1

J_ r
0.75
‘ 0.5
0.25

1=8

AN /\ /\ ) =
v 7 A4
0.2 0.4 0.6 0.8 1

Figure 4. Numerical solutions of (2.1) with method A, for k = 107 and N = 10and I = 8and I = 9.
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In Table 7 we present two numerical experiments for N = 10, I = 5, and respectively
k = 1073, k = 10~°. From (4.5) we would expect the asymptotic value wr ~ 1/122, which
isagood prediction of the numerical oscillations.

In [1] the authors suggested that in convection-dominated problems method A was not
very sensitive to the index of the “changing node”. This result is confirmed by (4.5). In fact,
observing this last expression, we easily see that, with N fixed the more steps of size i we
consider, that is the smaller is I, then the smaller are the oscillations. In Figure 4 we present
two numerical solutions as obtained with method A, for & = 1073, with N = 10, and with
I =8and I =9, respectively. From (4.5) we have in the first case (I = 8), wr =~ %1. In the
case ] = 9wehavew; ~ 3. Observing that these estimates have been established for & — 0,
and that we are using & = 102, we can conclude that they provide us with good predictions.
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0.758

0.5

0.25

k= 103

-0.25

k=105

Figure 5. Numerical solutions of (2.1) with method B, for I = 5, N = 10, k = 10 3 and k = 105, respectively.

Method B
From (3.10), Table 3 and Table 6 we have

Qv = Qr+ (1) (h Zk h—2k  h—2k
+E+2k h+ 2k
h—2k\ Fh—2k ’

with Q7 given by (4.3). Considering that, & = k, in (4.6) and computing the geometric
sum in brackets, we have

On = ll_ <_Z - §:>I] (% B %) B %(_1)1 (Z - §:>H h(hgﬁZZk) 1-3"1.

h-|-2k h<h+2k h-|-2k< E+2k>
— — + ..
h h
N—-I—

(4.6)

4.7
Taking limitsin (4.1), we obtain
1, I odd,
A ;| = { s, I even. (4.8)

In Figure 5 we present two numerical experiments, with method B, for the case I odd, for
k =10"3and k = 1075, respectively. In this experiment N = 10 and I = 5.

If the parity of the “changing node” x; is even, it was observed in [1] that the numerical
results strongly deteriorate. The result in (4.8) explains this numerical evidence.
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Figure 6. Numerical solutions of (2.1) with method C, for I =5, N = 10and k = 10~%, k = 1075, respectively.

Method C
Using (3.10), Table 3 and Table 6, we have

h— 2k h

h+2k)”ﬁ
h

h+h+4k h+h+ 4k (_E+2k> N
5

Oy = Qr+(=1) h+h—4k  h+h—4k

bl

+h+E+4k _E+2k N-rd
h+h—4k\ h—2k

with Q7 given by (4.3). Considering that . = k& in (4.9), and computing the geometric sumin
brackets, we obtain

or=o- (2] (-5 -2 (223) $hSavn
(4.10)

Taking limitsin (4.1), we conclude that

{1, I odd

limw; =
J oo, I even.

k—0

In Figure 6 we present two numerical experiments, using method C, for £ = 102 and
k = 107>, with I = 5and N = 10. We note that for £ = 10~°> methods B and C produce
practically the same numerical solution as could be expected from (4.8) and (4.10). For I even
the numerical solution exhibits an unstable behaviour.
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Table 8. Size of the numerical oscillationswhen k — 0

Method T odd I even
2 2
A = =
1+3N-1 NI 1
B 1 unbounded
C 1 unbounded

Remark — L et
E]'+1 ZT(:U]'+1) —T']‘+1, _] = O, 1,...,N— 1,

where T'(x ;) represents the solution of (2.1) and 7} the solution of (2.9).
This error satisfies the difference equation

{aj+1DEj+1+bjDE]’ = tj, j=1...,N -1,
EO:EN:O7

where t; represents the truncation error at = = z;. Proceeding asin section 2, we have

Qi1 = /
Ej1=— é > hiyaSi+ Y hipaSi
N =1 i=1

with

S—Z )it biy1...b; hl+hl+1tl.

= a2 aj11hipr — 2k
Consequently
|QJ+1|) : hz + hz+1
E; < < ) .
| J+1| |Q | ; +1 Z 2k|

Using the truncation errors in Table 1, we conclude that methods A, B and C have a
global-error of order two if the constant

<L+@ﬁﬂ» j=0,1,...,N—1,
Q|

is bounded. Conseguently, methods B and C are clearly unstable when the changing node
x has an even index. In Table 8 we summarize our conclusions concerning the size of the
numerical oscillations for the three methodswhen & — 0.

To conclude this section, we briefly refer to what happens to the numerical solution when
auniform grid isused. In this case methods A, B and C coincide and from (3.10) we conclude
that

lim Qy = 1, if Nisodd
koo N 710, if Niseven.



Numerical oscillations on nonuniformgrids 333

0.5¢

0.2 0.4 0.6 0.8 1
-0.25

-0.5¢

-0.75 |

-1t

Figure 7. Numerical solution of (2.1) with 4PU (¢ = %) on auniform grid, with h = 10~ %, k = 1072,

and conseguently
limw, = { b N isodd
k-0 7 | oo, N iseven.

Asiswell known, when N is even, the method is unstable (w; is unbounded). For N odd,
the numerical solution obtained on a uniform grid is analogous to the solutions obtained with
methods B and C on a honuniform grid.

5. Final Remarks

In boundary-value problems such as (2.1), with small viscosity &, the solution exhibits avery
sharp profile. If symmetric three-point formulas are used, on a uniform grid, to represent
du/dz, non-physical oscillations occur; if asymmetric algebraic formulas of low order are
used to represent du/dz, the smoothness of the numerical solution isimproved, but it appears
that it has diffused away. This fact is consistent with the introduction of diffusive termsin
the truncation error which are comparable in magnitude with the diffusivity of the continuous
model.

If higher-order asymmetric formulae are used, as the four-points upwind (4PU) defined by

ar _Tja—Tja  Tjipa =3+ 311~ T;
dz 2h 1 3h

where ¢ is afree parameter, the accuracy is improved substantially. In Figure 7 we present a
numericall experiment obtained with such amethod on auniformgrid for & = 1073, » = 101
andqg = 5.

If wezcompare the profile in Figure 7 with the one obtained in Figure 8 with the same
method, but using ¢ = 0—that is central differences on auniform grid —we observe that 4PU
has greatly improved the numerical solution.

Let usreturn now to the subject of nonuniform grids. If we compare the profilein Figure 7
— obtained with 4PU on a uniform grid with the profile in Figure 4, obtained with Method A
on anonuniform grid — we conclude that method A introduces no dissipation, nor dispersion,
in the numerical solution and that 4PU still exhibits some spurious oscillations, and some
dissipation.

These experiments suggest that the use of alower-order discretization formulaon anonuni-
form grid (method A) produces much better results than a higher-order formula on uniform
grids (4PU method). This assertion could, however, invite the following gquestion: can we

2 1 0(h?), (5.1)
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Figure 8. Numerical solution of (2.1) with central differences on a uniform grid, with h = 107, and k = 102,
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Figure 9. Numerical solution of (2.1) with 4PU on anonuniform grid, with N = 10,7 = 5,k = 103,

improve the accuracy of the numerical solution when a higher-order formula such as 4PU is
used on a nonuniform grid? To answer this question, we have deduced a 4PU method on a
nonuniform grid, obtaining
OF _ Tpa—Tim
dz hj+hjt1 %
hiTji1+ hj1Tj—1 — (hj + hj1)Tj _ hj_1Tj+ hjTj_2 — (hj + hj—1)Tj-1
hihjiih /2 hjhj—1hj—1/2

(5.2)

hji1/2

We selected ¢; in order to cancel the second-order dispersion term on the Modified Equation
[3]. We obtain
_ —(h3 .y + h3) + 2Kk(R3,, — h2)
UG T A+ b+ hiy)
We note that in the case of a uniform grid, ~; = h, and we have q; = %hz, which
is a value that agrees with the one presented in [3]. Discretizing d7'/dz with (5.2), (5.3)
and d?7'/dz? with (2.8), we obtain a nonuniform version of 4PU. In Figure 9 we present a
numerical experiment obtained with this method for N = 10,7 = 5and k£ = 103, This

(5.3)
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numerical experiment, and others that have been carried out, suggest that our question must
be answered negatively: the use of a higher-order formula (such as 4PU) on a nonuniform
grid hardly improves the result obtained with the same formula on a uniform grid.

Finally we concludethat the most accurate numerical simulationsof thetwo-point boundary-
valueproblem (2.1) —without practically any numerical dispersion nor dissipation—have been
obtained with centered finite differences on nonuniform grids. These simulations are much
more accurate than those obtai ned with ahigher-order differenceformula, such as4PU, defined
on auniform or a nonuniform grid.
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