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Numerical oscillations on nonuniform grids
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Abstract. In this paper we study a class of numerical methods used to solve two-point boundary-value problems
on nonuniform grids. Particular attention is devoted to numerical oscillations which are quantified for different
methods. Numerical experiments are also included.

1. Introduction

The purpose of this paper is to study numerical oscillations for a class of numerical methods
used to solve two-point boundary-value problems on nonuniform grids. Our contribution gives
a theoretical foundation to numerical results obtained earlier by Veldman and Rinzema [1].

Recently, several adaptive methods have been developed to solve Partial Differential
Equations whose solution presents sharp spatial transitions. When standard centered finite-
difference formulas are generalized to nonuniform grids, the order of the truncation error is,
generally, lower than on uniform grids. However, the use of some of these formulas provide
very accurate results. This apparently surprising fact suggests that the global-error should
have an order of convergence greater than that of the truncation error. Such a phenomenon,
which has been called supraconvergence, has received the attention of many authors. As to
supraconvergence of numerical methods for boundary-value problems we can mention for
example Manteuffel and White in [2]. With the study of supraconvergence it becomes clear
that the truncation error does not provide us with a good indicator of the method’s accuracy. In
the above-mentioned paper, Veldman and Rinzema study two finite-difference discretizations
for a two-point boundary-value problem and conclude that, even if both are supraconvergent,
– with the same global-error order – they produce very different numerical simulations. More
precisely, the formula which has a first-order truncation error gives more accurate numerical
results.

These remarks lead us to the conclusion that the truncation and global-error orders do not
give enough information on “the quality” of the numerical simulation. If two formulas have
the same global-error order, it seems clear that an indicator to distinguish them could be the
size of the error constant. The boundedness properties of this constant are related to stability,
but a more detailed analysis of its behaviour can give important information on the expected
accuracy.

In the present paper, and following this last idea, we study the numerical oscillations of a
class of methods, which includes the methods in [1] and [2], for solving a two-point boundary-
value problem on nonuniform grids. Our approach furnishes a prediction of the magnitude of
the non-physical oscillations, and also a study of the sensitivity of the method to the index of
the node where a step change occurs.
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The paper is organized as follows. In Section 2 we construct a general class of methods
for solving a two-point boundary-value problem on a nonuniform grid. In Section 3 we study
the numerical (non-physical) oscillations of different methods of the class. In Section 4 its
asymptotic behaviour (relatively to the second-derivative coefficient) is studied. A certain
number of numerical examples which illustrate the accuracy of our predictions are also
exhibited. Finally in Section 5 some remarks are presented.

2. A class of methods for solving boundary-value problems

We consider the numerical solution of two-point boundary-value problems of type
8><
>:
�

dT
dx

+ k
d2T

dx2 = 0; 0 < x < 1; k > 0;

T (0) = 0; T (1) = 1;

(2.1)

through three-point difference schemes defined on a nonuniform mesh fxigNi=0 with

0 = x0 < x1 < x2 . . . < xN�1 < xN = 1: (2.2)

Let

hj+1 = xj+1 � xj; j = 0; . . . ; N � 1; (2.3)

h = max
j=0;...;N�1

hj+1: (2.4)

To discretize the first derivative in (2.1) we use a first-order three-point formula defined by

d
dx
T (xj) = cjTj�1 + cjTj + cjTj+1 +O(h) (2.5)

for j = 1; . . . ; N � 1, where Tj stands for an approximation of T (xj) and

�
cj = �

1
hj + hj+1

�
cjhj+1

hj + hj + 1
; cj =

1
hj + hj+1

�
cjhj

hj + hj+1
: (2.6)

In what follows formula (2.5) will be represented by [cj; cj ; cj ]. From (2.6) we can give
(2.5) the form

d
dx
T (xj) =

Tj+1 � Tj�1

hj + hj+1
� cj

hjTj+1 + hj+1Tj�1 � (hj + hj+1)Tj

hj + hj+1
+O(h); (2.7)

which means that a first-order three-point formula can be viewed as a centered difference
formula with a certain amount of numerical viscosity. In fact, the second term on the right-
hand side of (2.7) is a discretization of �1

2cjhjhj+1
d2

dx2T , on the nonuniform grid (2.2). For
certain choices of the parameter cj we find discretization formulas already referred to in the
literature. In Table 1 we have listed some of these. For a positive cj , where cj = 1=hj , we
obtain an upwind difference formula U; if cj = 0 a centered difference formula A is obtained.
When cj = (hj+1� hj)=(thj+1hj), we obtain method B, for t = 1, and method C, for t = 2;
both methods are mentioned in [1] and [2].
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Table 1. First-order discretization formulas

Formula cj Formula Main term in
designation truncation error

U 1=hj

�
�

1
hj

;
1
hj

; 0

�
1
2hj

d2

dx2T (xj)

A 0

�
�

1
hj + hj+1

; 0;
1

hj + hj+1

�
1
2 (hj+1 � hj)

d2

dx2T (xj)

B
hj+1 � hj

hj+1hj

�
�

hj+1

hj(hj + hj+1)
;
hj+1 � hj

hjhj+1
;

hj

hj+1(hj+1 + hj)

�
1
6 (hj+1hj)

d3

dx3T (xj)

C
hj+1 � hj

2hj+1hj

�
�

1
2hj

;
hj+1 � hj

2hjhj+1

1
2hj+1

�
1
4 (hj+1 � hj)

d2

dx2T (xj)

We shall discretize the second-order derivative in (2.1) using the first-order formula

d2

dx
T (xj) =

hjTj+1 � (hj + hj+1)Tj + hj+1Tj�1

hjhj+1hj+1=2
(2.8)

�
1
3
(hj+1 � hj)

d3

dx3T (xj) +O(h2
);

where hj+1=2 = (hj +hj+1)=2. From (2.7) and (2.8) we obtain a class of methods for solving
(2.1) of type8>><
>>:
�

Tj+1�Tj�1
hj+hj+1

+
� cj

2 hjhj+1 + k
� hjTj+1�(hj+hj+1)Tj+hj+1Tj�1

hjhj+1hj+1=2
= 0; j = 1; . . . ; N � 1;

T0 = 0;
TN = 1:

(2.9)

If we represent Tj+1�Tj
hj+1

by DTj+1, for j = 1; . . . ; N � 1, then (2.9) takes the form

(
[hj+1 � (2k + cjhjhj+1)]DTj+1 + [hj + (2k + cjhjhj+1)]DTj = 0; j = 1; . . . ; N � 1;
T 0 = 0;
TN = 1:

(2.10)

From (2.10) we can study the oscillatory behaviour of the class of methods. In fact we
have

DTj+1 = �
hj + (2k + cjhjhj+1)

hj+1 � (2k + cjhjhj+1)
DTj ; j = 1; . . . ; N � 1; (2.11)

provided that hj+1 � (2k + cjhjhj+1) 6= 0; j = 1; . . . ; N � 1. Let

aj+1 = hj+1 � (2k + cjhjhj+1); bj = hj + (2k + cjhjhj+1); (2.12)

for j = 1; . . . ; N � 1. In order to avoid spurious oscillations at x = xj , the condition

bj=aj+1 � 0; j = 1; . . . ; N � 1; (2.13)
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Table 2. Necessary and sufficient conditions to avoid oscillation at x = xj

Method aj+1 bj Condition (2.13)
Designation

U �2k hj + hj+1 + 2k always satisfied

A hj+1 � 2k hj + 2k hj+1 � 2k; j = 1; . . . ; N � 1

B hj � 2k hj+1 + 2k hj � 2k; j = 1; . . . ; N � 1

C
hj + hj+1 � 4k

2
hj + hj+1 + 4k

2
hj + hj+1 � 4k; j = 1; . . . ; N � 1

must be verified. For methods listed in Table 1, the particular form of condition (2.13) is
indicated in Table 2. We observe that if hj is constant, methods A, B and C reduce to the
standard centered discretization method, and condition (2.13) in this case takes the well-known
form h � 2k. Moreover, method U is the upwind method which clearly is devoid of spurious
oscillations. Since (2.10) is a first-order difference equation, with variable coefficients, it can
easily be solved giving

Tj = Qj=QN ; j = 1; . . . ; N � 1; (2.14)

with

Qj =

 
1�

b1

a2

h2

h1
+

b1b2

a2a3

h3

h1
+ � � �+ (�1)j�1 b1b2 � � � bj�1

a2a3 � � � aj

hj

h1

!
: (2.15)

3. Study of numerical oscillations

In this Section we will be concerned with the comparative study of numerical oscillations of
methods A, B and C. Methods A and C have a first-order truncation error, but it was proved
in [2] that the associated global errors are of second order. Method B has a second-order
truncation error and it can easily be established that it has a second-order global-error. If we
compare numerical results produced by methods A, B and C, we conclude that, for certain
nonuniform grids, method A produces very accurate solutions with practically no spurious
oscillations. Methods B and C are less accurate and these lead to significant non-physical
oscillations. Consequently, the global error and the truncation-error orders do not give enough
information as to the “quality” of the simulation, namely the numerical oscillations. In [1]
the authors studied methods A and B following an algebraic approach, but their aim was
not to quantify the magnitude of numerical oscillations. Here we follow a different approach
which furnishes a priori estimations of the magnitude of the oscillations produced by the three
methods.

RESTRICTIONS ON THE STEPSIZES

Problem (2.1) has a boundary layer near x = 1. This fact suggests that we should use a mesh
of decreasing stepsize, that is

hj+1 � hj ; j = 1; . . . ; N � 1:
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Table 3. Signs of coefficients aj

Method Restrictions on Sign of aj according to (2.15)
h and h

A h < 2k aj > 0; j = 1; . . . ; I
aj < 0; j = I + 1; . . . ; N � 1

B h < 2k aj > 0; j = 1; . . . ; I + 1
aj < 0; j = I + 2; . . . ; N � 1

C h < 2k aj > 0; j = 1; . . . ; I + 1
h+ h > 4k aj < 0; j = I + 2; . . . ; N � 1

Table 4. Numerical viscosity coefficient

Method Viscosity coefficient

U k +
hj

2

A k +
hj � hj + 1

2

B k

C k +
�
hj � hj+1

4

�

To simplify the presentation and following [1] we will consider a domain [0,1] decomposed in
two subdomains [0, xI] and [xI ; 1], each one of these being discretized with a uniform mesh
of stepsize h and h, respectively. According to Table 2 we will impose

h � 2k; (2.16)

which is a condition that guarantees that no numerical oscillation will appear in [xI ; 1] for
method A and in [xI+1; 1] for method B. If we assume that h + h � 4 k, method C will
present no oscillation in [xI+1; 1]. With this restriction on h we can easily analyse (Table 3)
the signs of coefficients aj (coefficients bj are always positive). These signs will be used in
the comparative study of numerical oscillations.

Remark – Following the Modified Equation Approach we know that method (2.9), solves
exactly the ordinary differential equation, with an infinite number of terms,

�
dT
dx

+

�
k +

cj

2
hjhj+1 �

1
2(hj+1 � hj)

�
d2T

dx2

+

"
1
3

�
k +

cj

2
hjhj+1

�
(hj+1 � hj)�

1
6

h3
j+1 + h3

j

hj+1 + hj

#
d3T

dx3 + � � � = 0:

In this sense this Equivalent Modified Equation has a viscosity coefficient given in Table 4
for the methods under consideration.

Method U has the largest numerical viscosity. In fact, it is well known that upwind solutions
contain a large amount of dissipation and no numerical oscillations. Methods A and C are
also dissipative, even if they present a smaller amount of numerical viscosity than method U.
Method B is not dissipative. If a uniform mesh is used, methods A, and C are not dissipative.

COMPARATIVE STUDY OF NUMERICAL OSCILLATIONS

We recall that we represented by xI the common “changing node” of the two subdomains in
which we decomposed [0,1], that is the node where a stepchange occurs. Let d represent an
odd number, with d � I and v an even number with v � I . Using the fact that the coefficients
bj are positive for the three methods and the information in Table 3, we easily conclude that

Qd � 0 (3.1)
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Table 5. Behaviour of the numerical solution of (2.10)

Method Behaviour in Behaviour in
[0; xI ] [xI ; 1]

I odd I even I odd I even
A oscillating oscillating monotone monotone

increasing increasing
B oscillating oscillating monotone monotone
C oscillating oscillating monotone monotone

and

Qv � 0: (3.2)

In fact

Qd = 1 +

�
�
b1

a2
+

b1b2

a2a3

�
+

�
(�1)d�2 b1b2 . . . bd�2

a2a3 . . . ad�1
+ (�1)d�1 b1b2 . . . bd�1

a2a3 . . . ad

�
; (3.3)

where each one of the terms in brackets is positive.
On the other hand, Qv can be written as

Qv =

�
1�

b1

a2

�
+ � � �+

�
b1b2 . . . bv�2

a2a3 . . . av�1

�
�

�
b1b2 . . . bv�1

a2a3 . . . av

�
(3.4)

and each one of the terms in brackets is negative. From (3.3) and (3.4) we conclude that for
j � I the numerical solution is alternately positive and negative and, consequently, oscillatory
for the three methods.

Let us now examine the signs of Qj for j > I . We have

Qj = QI +

"
(�1)I

b1b2 . . . bI
a2a3 . . . aI+1

h

h
+

(3.5)

+(�1)I+1 b1b2 . . . bI+1

a2a3 . . . aI+2

h

h
+ � � � + (�1)j�1 b1b2 . . . bj�1

a2a3 . . . aj

h

h

#
:

Let us assume that I is odd. We have from (3.1), QI � 0. From Table 3 we conclude that
in (3.5) the sum in brackets is positive for method A. As for this method we have QN > 0,
we conclude from (2.14) that the numerical solution is increasing in [xI ; 1], as is the exact
solution of (2.1).

If I is even, we have QN < 0 for method A and Qj < 0, j � I . The numerical solution
produced by A is also increasing in this case. Concerning methodsB andC we conclude from
(3.3), (3.4), (3.5), and Table 3 that the solution is monotonic in [xI ; 1]. We remark, however,
that the sign of QN being unknown – for methods B and C – we do not know a priori if the
solution is increasing or decreasing in [xI ; 1]. We summarize these observations in Table 5.

We recall that the uniform stepsize in [xI ; 1], h, is such that h � 2k. If the uniform
stepsize in [0; xI ], h, satisfies h � 2k, we will have no numerical oscillations. Let us assume
that h > 2k, which means numerical oscillations will appear in [0; xI ]. Let us consider the
oscillation wj of the numerical solution in xj , for j � I , defined by

wj = jTj � Tj�1j (3.6)
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that is

wj =
1

jQN j

b1b2 . . . bj�1

ja2jja3j . . . jaj j
: (3.7)

Let us suppose that we have established, using (2.13), that the numerical solution is
oscillatory in xj . From (3.6) we can then quantify the oscillation. We observe that wj � wj+1

for j � I � 1, where I represents the index of the node where the stepchange occurs.

Remark – The existence of oscillations is detected by (2.13), that is by the sign of
DTj+1=DTj . From (2.11) we have

DTj+1

DTj
= �

hj + (2k + cjhjhj+1)

hj+1 � (2k + cjhjhj+1)
: (3.8)

Other definitions of numerical oscillations could be proposed. If we had defined the
oscillation by this last quotient, we would have had for j � I(hj = h)

DTj+1

DTj
= �

h+ 2k
h� 2k

; j � I: (3.9)

This expression tells us that DTj+1=DTj is constant for a certain k and a certain stepsize
h. As we observe numerically that oscillations increase with j, such a definition would not be
an interesting one. As in (3.7) we have j � I , where I represents the index of the changing
node, the term b1b2 . . . bj�1=ja2jja3j . . . jaj j is the same for the three methods. To compare
the numerical oscillations wj it is then sufficient to quantify the different values of QN for
methods A, B and C. In (3.5) let j = N . We obtain

QN = QI + (�1)I
b1b2 . . . bI�1

a2a3 . . . aI

h

h

�
bI

aI+1
+

bI

aI+1

�
�
bI+1

aI+2

�
+

(3.10)
+

bI

aI+1

�
�
bI+1

aI+2

��
�
bI+2

aI+3

�
+ � � �+

�
bI

aI+1

��
�
bI+1

aI+2

�
. . .
�
�
bN�1

aN

��
:

Since we assumed that hj = h; j = 1; . . . ; I , and hj = h for j = I + 1; . . . ; N , we can
simplify (3.10), obtaining

QN = QI + (�1)I
(b1)

I�1

(a2)
I�1 �

h

h

2
4N�I�1X

j=0

bI

aI+1

�
�
bI+1

aI+2

�35 : (3.11)

The sum in brackets – which we will represent by R(cI) in what follows – is different
for the three methods, because it depends on the coefficient cI (see Table 1). This sum is a
geometric sum withN�I terms. We note that�bj=aj+1 is constant for j = I+1; . . . ; N�1.
For methods A, B and C the first term of the sum, bI=aI+1, and its ratio �bI+1=aI+2 are
listed in Table 6. We note that the ratio, �bI+1=aI+2, is positive and the same for the three
methods. The first term, bI=aI+1 is negative for method A and positive for methods B and
C. Oscillations produced by methods A and B can now be very easily compared. We recall
that for A we have cI = 0 and for B, cI = (h� h)=(hh). Let us assume that h2

+ h
2
� 8k2.

Under this condition on h and h we have

�
h+ 2k

h� 2k
�
h+ 2k
h� 2k

: (3.12)
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Table 6. First term and ratio of the geometric sum
R(cI).

Method First term bI
aI+1

�
bI+1
aI+2

A
h+ 2k

h� 2k
�
h+ 2k

h� 2k

B
h+ 2k
h� 2k

�
h+ 2k

h� 2k

C
h+ h+ 4k

h+ h� 4k
�
h+ 2k

h� 2k

Observing now that QI > 0 for I odd and QI < 0 for I even, we may conclude

����QI + (�1)I
b1b2 . . . bI�1

a2a3 . . . aI

h

h
RI(0)

���� >
����QI + (�1)I

b1b2 . . . bI�1

a2a3 . . . aI

h

h
RI

 
h� h

hh

!����: (3.13)

The inequality (3.13) means that the modulus of QN , associated with method A, is larger
than the modulus of QN associated with method B and, consequently, that the oscillations of
method A are smaller than the oscillations of method B, once h2

+ h
2
� 8k2 is satisfied. In

Figure 1 we present the numerical solution of (2.1) as computed with Method A and Method
B for k = 10�2; h = 1:9 � 10�1 and h = 10�2. Proceeding as before, we can compare
oscillations of methods B and C. We observe that

h+ 2k
h� 2k

�
h+ h+ 4k

h+ h� 4k
;

and, consequently,

QI + (�1)I
b1b2 . . . bI�1

a2a3 . . . aI

h

h
RI

 
h� h

hh

!
� QI + (�1)I

b1b2 . . . bI�1

a2a3 . . . aI

h

h
RI

 
h� h

2hh

!
:

(3.14)

We remark that the left-hand side of (3.14) represents the quantity QN for method B (for
method B we have cI = h � h=hh) and the right-hand side is the quantity QN for method
C (for method C, we have cI = h � h=2hh). In order to compare the relative sizes of the
oscillations, defined by (3.7), we must know the signs of both members in (3.14). For example,
if they are both positive we conclude that B produces smaller oscillations than C (see Figure
2, which corresponds to N = 10; I = 5; k = 10�3; h = 1:99� 10�1; h = 10�3).

When the two parts of (3.14) are both negative, the oscillations produced by B are larger
than those produced by C. (see Figure 3, which corresponds toN = 10; I = 5; k = 10�2; h =

1:96� 10�1; h = 10�2).

4. Asymptotic behaviour of numerical oscillations

As we are interested in the coefficient k, with k � 1, we study, in this section, the asymptotic
behaviour of the oscillation when k ! 0. We note that we must have k 6= 0.



Numerical oscillations on nonuniform grids 327

Figure 1. Numerical solution of (2.1) computed with A and B for k = 10�2.

Figure 2. Numerical solutions of (2.1) computed with B and C for k = 10�3.

We already assumed that h � 2k. Let us suppose that h = k. For j � I , where xI is the
common node of the two subdomains [0; xI ]; [xI ; 1], we have

wj =
1
QN

�
h+ 2k
h� 2k

�j�1

: (4.1)
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Figure 3. Numerical solutions of (2.1) computed with B and C, for k = 10�2.

Method A

From (3.10), Table 3 and Table 6 we have

QN = QI + (�1)I
�
h+ 2k
h� 2k

�I�1 h

h

 
h+ 2k

h� 2k
+
h+ 2k

h� 2k

 
�
h+ 2k

h� 2k

!
+ � � �

(4.2)

� � �+
h+ 2k

h� 2k

 
�
h+ 2k

h� 2k

!N�I�1
1
A

with

QI =

0
@1�

 
�
h+ 2k

h� 2k

!I
1
A�1

2
�
k

h

�
: (4.3)

Replacing (4.3) in (4.2) and considering h = k, we obtain

QN =

"
1�

�
�
h+ 2k
h� 2k

�I
#�

1
2
�
k

h

�
� (�1)I

�
h+ 2k
h� 2k

�I�1 h+ 2k
h

1� 3N�I

2
: (4.4)

Taking limits in (4.1), when k ! 0, we easily establish that

lim
k!0

wj =

8>>><
>>>:

2
1 + 3N�I

; I odd;

2
�1 + 3N�I

; I even:

(4.5)
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Table 7. Numerical solution of (2.1) with method A for k = 10�3, and k = 10�5, respectively.

xj Solution with k = 10�3 xj Solution with k = 10�5

0.199 7.491�10�3 0.19999 8.189�10�3

0.398 �1.521�10�4 0.39998 �1.638�10�6

0.597 7.646�10�3 0.59997 8.191�10�3

0.796 �3.104�10�4 0.79996 �3.277�10�6

0.995 7.808�10�3 0.99995 8.193�10�3

0.996 1.601�10�2 0.99996 1.639�10�2

0.997 4.061�10�2 0.99997 4.098�10�2

0.998 1.144�10�1 0.99998 1.148�10�1

0.999 3.358�10�1 0.99999 3.362�10�1

Figure 4. Numerical solutions of (2.1) with method A, for k = 10�3 and N = 10 and I = 8 and I = 9.

In Table 7 we present two numerical experiments for N = 10, I = 5, and respectively
k = 10�3, k = 10�5. From (4.5) we would expect the asymptotic value wI � 1=122, which
is a good prediction of the numerical oscillations.

In [1] the authors suggested that in convection-dominated problems method A was not
very sensitive to the index of the “changing node”. This result is confirmed by (4.5). In fact,
observing this last expression, we easily see that, with N fixed the more steps of size h we
consider, that is the smaller is I , then the smaller are the oscillations. In Figure 4 we present
two numerical solutions as obtained with method A, for k = 10�3, with N = 10, and with
I = 8 and I = 9, respectively. From (4.5) we have in the first case (I = 8); wI �

1
4 . In the

case I = 9 we have wI �
1
2 . Observing that these estimates have been established for k ! 0,

and that we are using k = 10�3, we can conclude that they provide us with good predictions.
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Figure 5. Numerical solutions of (2.1) with method B, for I = 5, N = 10, k = 10�3 and k = 10�5, respectively.

Method B

From (3.10), Table 3 and Table 6 we have

QN = QI + (�1)I
�
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h� 2k

�I�1 h

h
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�
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!
+ � � �

(4.6)
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!N�I�1
1
A ;

with QI given by (4.3). Considering that, h = k, in (4.6) and computing the geometric
sum in brackets, we have

QN =

"
1�

�
�
h+ 2k
h� 2k

�I
#�

1
2
�
k

h

�
�

1
2
(�1)I

�
h+ 2k
h� 2k

�I�1 3k2

h(h� 2k)
(1� 3N�I):

(4.7)

Taking limits in (4.1), we obtain

lim
k!0

j!j j =

�
1; I odd;
1; I even:

(4.8)

In Figure 5 we present two numerical experiments, with method B, for the case I odd, for
k = 10�3 and k = 10�5, respectively. In this experiment N = 10 and I = 5.

If the parity of the “changing node” xI is even, it was observed in [1] that the numerical
results strongly deteriorate. The result in (4.8) explains this numerical evidence.
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Figure 6. Numerical solutions of (2.1) with method C, for I = 5, N = 10 and k = 10�3, k = 10�5, respectively.

Method C

Using (3.10), Table 3 and Table 6, we have

QN = QI + (�1)I
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with QI given by (4.3). Considering that h = k in (4.9), and computing the geometric sum in
brackets, we obtain

QN =
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1�

�
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(1� 3N�I):

(4.10)

Taking limits in (4.1), we conclude that

lim
k!0

wj =

�
1; I odd
1; I even.

In Figure 6 we present two numerical experiments, using method C, for k = 10�3 and
k = 10�5, with I = 5 and N = 10. We note that for k = 10�5 methods B and C produce
practically the same numerical solution as could be expected from (4.8) and (4.10). For I even
the numerical solution exhibits an unstable behaviour.
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Table 8. Size of the numerical oscillations when k! 0

Method I odd I even

A
2

1 + 3N�I
2

3N�I � 1

B 1 unbounded
C 1 unbounded

Remark – Let

Ej+1 = T (xj+1)� Tj+1; j = 0; 1; . . . ; N � 1;

where T (xj) represents the solution of (2.1) and Tj the solution of (2.9).
This error satisfies the difference equation8<
:
aj+1DEj+1 + bjDEj = tj ; j = 1; . . . ; N � 1,

E0 = EN = 0;

where tj represents the truncation error at x = xj . Proceeding as in section 2, we have

Ej+1 = �
Qj+1

QN

N�1X
i=1

hi+1Si +

jX
i=1

hi+1Si

with

Si =

iX
l=1

(�1)i�l
bl+1 . . . bj
al+2 . . . aj+1

hl + hl+1

hl+1 � 2k
tl:

Consequently

jEj+1j �

�
1 +

jQj+1j

jQN j

� N�1X
i=1

hi+1

iX
l=1

hl + hl+1

jhl+1 � 2kj
jtlj

!
:

Using the truncation errors in Table 1, we conclude that methods A, B and C have a
global-error of order two if the constant�

1 +
jQj+1j

jQN j

�
; j = 0; 1; . . . ; N � 1;

is bounded. Consequently, methods B and C are clearly unstable when the changing node
xI has an even index. In Table 8 we summarize our conclusions concerning the size of the
numerical oscillations for the three methods when k ! 0.

To conclude this section, we briefly refer to what happens to the numerical solution when
a uniform grid is used. In this case methods A, B and C coincide and from (3.10) we conclude
that

lim
k!0

QN =

�
1; if N is odd
0; if N is even.
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Figure 7. Numerical solution of (2.1) with 4PU (q = 1
2 ) on a uniform grid, with h = 10�1; k = 10�3.

and consequently

lim
k!0

wj =

�
1; N is odd
1; N is even.

As is well known, when N is even, the method is unstable (wI is unbounded). For N odd,
the numerical solution obtained on a uniform grid is analogous to the solutions obtained with
methods B and C on a nonuniform grid.

5. Final Remarks

In boundary-value problems such as (2.1), with small viscosity k, the solution exhibits a very
sharp profile. If symmetric three-point formulas are used, on a uniform grid, to represent
du=dx, non-physical oscillations occur; if asymmetric algebraic formulas of low order are
used to represent du=dx, the smoothness of the numerical solution is improved, but it appears
that it has diffused away. This fact is consistent with the introduction of diffusive terms in
the truncation error which are comparable in magnitude with the diffusivity of the continuous
model.

If higher-order asymmetric formulae are used, as the four-points upwind (4PU) defined by

dT
dx

=
Tj+1 � Tj�1

2h
� q

Tj+1 � 3Tj + 3Tj�1 � Tj�2

3h
+O(h2

); (5.1)

where q is a free parameter, the accuracy is improved substantially. In Figure 7 we present a
numerical experiment obtained with such a method on a uniform grid for k = 10�3; h = 10�1

and q =
1
2 .

If we compare the profile in Figure 7 with the one obtained in Figure 8 with the same
method, but using q = 0 – that is central differences on a uniform grid – we observe that 4PU
has greatly improved the numerical solution.

Let us return now to the subject of nonuniform grids. If we compare the profile in Figure 7
– obtained with 4PU on a uniform grid with the profile in Figure 4, obtained with Method A
on a nonuniform grid – we conclude that method A introduces no dissipation, nor dispersion,
in the numerical solution and that 4PU still exhibits some spurious oscillations, and some
dissipation.

These experiments suggest that the use of a lower-order discretization formula on a nonuni-
form grid (method A) produces much better results than a higher-order formula on uniform
grids (4PU method). This assertion could, however, invite the following question: can we
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Figure 8. Numerical solution of (2.1) with central differences on a uniform grid, with h = 10�1, and k = 10�3.

Figure 9. Numerical solution of (2.1) with 4PU on a nonuniform grid, with N = 10; I = 5; k = 10�3.

improve the accuracy of the numerical solution when a higher-order formula such as 4PU is
used on a nonuniform grid? To answer this question, we have deduced a 4PU method on a
nonuniform grid, obtaining

dT
dx

=
Tj+1 � Tj�1

hj + hj+1
� qj

(5.2)
hjTj+1 + hj+1Tj�1 � (hj + hj+1)Tj

hjhj+1hj+1=2
�
hj�1Tj + hjTj�2 � (hj + hj�1)Tj�1

hjhj�1hj�1=2

hj+1=2
:

We selected qj in order to cancel the second-order dispersion term on the Modified Equation
[3]. We obtain

qj =
�(h3

j+1 + h3
j) + 2k(h3

j+1 � h2
j)

4(hj�1 + hj + hj+1)
: (5.3)

We note that in the case of a uniform grid, hj = h, and we have qj =
�1
6 h

2, which
is a value that agrees with the one presented in [3]. Discretizing dT=dx with (5.2), (5.3)
and d2T=dx2 with (2.8), we obtain a nonuniform version of 4PU. In Figure 9 we present a
numerical experiment obtained with this method for N = 10; I = 5 and k = 10�3. This
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numerical experiment, and others that have been carried out, suggest that our question must
be answered negatively: the use of a higher-order formula (such as 4PU) on a nonuniform
grid hardly improves the result obtained with the same formula on a uniform grid.

Finally we conclude that the most accurate numerical simulations of the two-point boundary-
value problem (2.1) – without practically any numerical dispersion nor dissipation – have been
obtained with centered finite differences on nonuniform grids. These simulations are much
more accurate than those obtained with a higher-order difference formula, such as 4PU, defined
on a uniform or a nonuniform grid.
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